Preparation and Some Reactions of Compounds of the Type $\left(\mathbf{M e}_{3} \mathbf{S i}\right)_{2} \mathrm{C}$ ($\left.\mathbf{S i M e}_{2} \mathbf{O M e}\right)\left(\mathrm{SiMe}_{2} \mathrm{X}\right)$. Anchimeric Assistance by the Methoxy Group

Abdulaziz I. AI-Wassil, Colin Eaborn," and M. Novella Romanelli School of Chemistry and Molecular Sciences, University of Sussex, Brighton, BN1 90J

Abstract

Because of anchimeric assistance by the γ - OMe group the compound $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{Cl}\right)$ (1) ($\mathrm{R}=\mathrm{SiMe}_{3}$ throughout), in contrast to the closely related $\mathrm{R}_{3} \mathrm{CSiMe}_{2} \mathrm{Cl}$, reacts readily with silver salts; thus reactions with AgY or AgBF_{4} give the compounds $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{X}\right)$ with $\mathrm{X}=\mathrm{ONO}_{2}, \mathrm{NCO}$, $\mathrm{OCOCF}_{3} \mathrm{OCOMe}^{2} \mathrm{OCOPh}, \mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{p}$, or F . The anchimeric assistance is so great that even the hydride $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{H}\right)$ reacts with silver salts; thus $\mathrm{AgOCOCF}_{3}$ gives $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)$ ($\mathrm{SiMe}_{2} \mathrm{OCOCF}_{3}$). The azide $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{~N}_{3}\right)$ was made by treatment of (1) with NaN_{3} in $\left(\mathrm{MeOCH}_{2}\right)_{2}$. Treatment of (1) with water in dioxane gives $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{OH}\right)$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OH}\right)_{2}$ in its absence. Likewise reaction with $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ gives $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{OCH}_{2} \mathrm{CF}_{3}\right)$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}$ in its absence. The bis(trifluoroacetate) $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OCOCF}_{3}\right)_{2}$ reacts with MeOH more slowly than $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{OCOCF}_{3}\right)$, indicating that the $\gamma-\mathrm{OCOCF}_{3}$ provides less anchimeric assistance than the γ-OMe group.

It has been briefly reported that the γ-OMe group in the compound $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{Cl}\right)(1)\left(\mathrm{R}=\mathrm{SiMe}_{3}\right.$ throughout this paper) provides powerful anchimeric assistance to the departure of the Cl^{-}in alcoholysis, the reaction apparently involving rate-determining ionization to give the methoxybridged cation (2); ${ }^{1}$ thus (1) is $>10^{6}$ times as reactive towards MeOH as the closely related compound $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{Cl}\right) .{ }^{2} \mathrm{We}$ describe below the preparations and some reactions of a range of compounds $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{X}\right)$ required for a detailed study of such anchimeric assistance.

Results and Discussion

Compound (1), the starting material for most of the work described here, was usually made as previously described by treatment of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right) \mathrm{Li}$ (cf. ref. 3) with $\mathrm{Me}_{2} \mathrm{SiCl}_{2}{ }^{4}$ It was also obtained, however, via the hydride $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)$ $\left(\mathrm{SiMe}_{2} \mathrm{H}\right)$, which was made from $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right) \mathrm{Li}$ and $\mathrm{Me}_{2} \mathrm{SiHCl}$; the hydride was treated with ICl to give (1). It is of interest that only the chloride (1) was isolated even when slightly less than 1 molar proportion of ICl was used, since $\mathrm{R}_{3} \mathrm{CSiMe}_{2} \mathrm{H}$ under the same conditions gives only the iodide $\mathrm{R}_{3} \mathrm{CSiMe}_{2} \mathrm{I}^{5,6}$ It is uncertain whether the chloride (1) is the initial product or comes from prior formation of the iodide and subsequent reaction of the latter. ${ }^{7}$

The chloride $\mathrm{R}_{3} \mathrm{CSiMe}_{2} \mathrm{Cl}$ does not react with silver salts under conditions in which the corresponding iodide reacts readily. ${ }^{5}$ Because of the powerful anchimeric assistance by the OMe group, the chloride (1) also reacts readily with a range of silver salts, AgY , in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{Et}_{2} \mathrm{O}$, and the compounds $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{X}\right)$ with $\mathrm{X}=\mathrm{ONO}_{2}, \mathrm{NCO}, \mathrm{OCOCF}_{3}$, OCOMe, OCOPh, or $\mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p$, were obtained in this way. (The formation of the normal thiocyanate on reaction with AgSCN has been briefly reported. ${ }^{8}$) Use of AgBF_{4} likewise gave the fluoride $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{~F}\right)$. So great is the effect of the OMe group that even the hydride $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)$ $\left(\mathrm{SiMe}_{2} \mathrm{H}\right)$ reacts with silver salts; thus with $\mathrm{AgOCOCF}_{3}$ it rapidly gave the trifluoroacetate.
The azide $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{~N}_{3}\right)$ was obtained by treating (1) with NaN_{3} in 1,2-dimethoxyethane; the reaction requires several hours under reflux because (1) is only a few

times as reactive as $\mathrm{TsiSiMe}_{2} \mathrm{Cl}$ in such direct nucleophilic substitutions. ${ }^{9}$

When (1) was treated with an excess of water in dioxane the diol $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OH}\right)_{2}$ was formed exclusively. After the initial conversion into $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{OH}\right)$, subsequent loss of the OMe group is catalysed by the formed hydrochloric acid and anchimerically assisted by the $\gamma-\mathrm{OH}$ group. When the reaction was carried out in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ the methoxy-hydroxy compound $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)$ ($\mathrm{SiMe}_{2} \mathrm{OH}$) was obtained. Treatment of (1) with $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ likewise gave $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{OCH}_{2} \mathrm{CF}_{3}\right)$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ but $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}$ in its absence. The nitrate $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{ONO}_{2}\right)$ reacted readily with MeOH at room temperature to give $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)_{2}$, and with $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ to give $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}$.

The dimethoxide $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)_{2}$ did not react with refluxing ethanol or aqueous acetone, but with the more acidic $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ it gave $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}$. The latter did not react with refluxing MeOH .

The chloride (1) reacted readily with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ at room temperature to give $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OCOCF}_{3}\right)_{2}$. When a solution of the latter in MeOH was kept at $60^{\circ} \mathrm{C}$, half of it had reacted after $c a .60 \mathrm{~h}$. The methoxy trifluoroacetate $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)$ ($\mathrm{SiMe}_{2} \mathrm{OCOCF}_{3}$) was markedly more reactive, half of it reacting in about 1 h , and conversion into $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OCOCF}_{3}\right)_{2}$ being complete within 20 h ; it is evident that under these conditions the γ - OCOCF_{3} group supplies anchimeric assistance considerably less effectively than the γ-OMe group.

Experimental

The ${ }^{1} \mathrm{H}$ n.m.r. spectra were recorded (for solutions in CCl_{4} containing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as lock and reference) at 90 MHz with a

Perkin-Elmer R32 spectrometer. Unless otherwise indicated ${ }^{19} \mathrm{~F}$ n.m.r. spectra were recorded at 84.6 MHz with the same spectrometer or at 75.4 MHz with a Bruker WP80 FT spectrometer for solutions in CCl_{4} containing CFCl_{3} as reference; negative shifts are upfield from CFCl_{3}. The i.r. spectra were recorded (for Nujol mulls between NaCl plates unless otherwise indicated) with a Perkin-Elmer 1574 spectrophotometer. All solvents were dried by standard methods.

Preparations of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{X}\right)$.-(a) $\mathrm{X}=\mathrm{H}$. A 1.6 m -solution of $\mathrm{Bu}^{\mathrm{n}} \mathrm{Li}(10.6 \mathrm{mmol})$ in hexane $\left(6.60 \mathrm{~cm}^{3}\right)$ was added dropwise at $-110^{\circ} \mathrm{C}$ to a stirred solution of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right) \mathrm{Cl}^{4}(3.0 \mathrm{~g}, 10.6 \mathrm{mmol})$ in a mixture of tetrahydrofuran (THF) $\left(65 \mathrm{~cm}^{3}\right), \mathrm{Et}_{2} \mathrm{O}\left(3.0 \mathrm{~cm}^{3}\right)$, and n-pentane $\left(3.0 \mathrm{~cm}^{3}\right)$. The mixture was stirred at $-110^{\circ} \mathrm{C}$ for 40 min then allowed to warm to $-80^{\circ} \mathrm{C}$, and $\mathrm{Me}_{2} \mathrm{SiHCl}(1.0 \mathrm{~g}, 0.0107 \mathrm{~mol})$ was added dropwise. The mixture was allowed to warm to room temperature, volatile material was removed under vacuum, and the solid residue recrystallized from MeOH to give (dimethylsilyl)(methoxydimethylsilyl)bis(trimethylsilyl)methane (2.0 g , 62%), m.p. $195^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 0.16$ (s, $18 \mathrm{H}, \mathrm{SiMe}_{3}$), 0.24 (d, 6 H , $\mathrm{SiMe}_{2} \mathrm{OMe}$), 0.28 (s, $6 \mathrm{H}, \mathrm{SiMe}_{2} \mathrm{H}$), 3.38 (s, $3 \mathrm{H}, \mathrm{OMe}$), and 3.96 (m, $1 \mathrm{H}, \mathrm{SiH}$); v(SiH) (Nujol) $2100 \mathrm{~cm}^{-1} ; m / z 291$ (100%, $[M-\mathrm{Me}]^{+}$), 217 ($15,\left[M-\mathrm{SiMe}_{2} \mathrm{OMe}\right]^{+}$), 201 (15 , [$M-\mathrm{Me}-\mathrm{SiMe}_{2} \mathrm{HOMe}^{+}$), 187 (15), and 73 (50) (Found: 46.4; $\mathrm{H}, 11.4$. $\mathrm{C}_{12} \mathrm{H}_{34} \mathrm{OSi}_{4}$ requires $\mathrm{C}, 47.0 ; \mathrm{H}, 11.2 \%$).
(b) $\mathrm{X}=\mathrm{Br}$. A 1 m -solution of $\mathrm{Br}_{2}(2.1 \mathrm{mmol})$ in $\mathrm{CCl}_{4}\left(2.1 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)$ $\left(\mathrm{SiMe}_{2} \mathrm{H}\right)(0.60 \mathrm{~g}, 1.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4.0 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 20 min then the solvent was removed and the solid residue sublimed $\left(100^{\circ} \mathrm{C}\right.$ at 0.5 Torr) to give (bromodimethylsilyl)(methoxydimethylsilyl)bis(trimethylsilyl)methane ($0.51 \mathrm{~g}, 68 \%$), m.p. $201{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 0.28$ (s, 18 H , SiMe_{3}), 0.32 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{SiMe}_{2} \mathrm{OMe}$), 0.77 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{SiMe}_{2} \mathrm{Br}$), and 3.32 (s, $3 \mathrm{H}, \mathrm{OMe}$); m/z 371, 369 (5%, [$M-\mathrm{Me}]^{+}$), 290 (10 , $\left.\left[_{M}-\mathrm{Me}-\mathrm{Br}\right]^{+}\right), 275\left(100,[M-\mathrm{Me}-\mathrm{MeBr}]^{+}\right), 201(20)$, and 73 (30).
(c) $\mathrm{X}=\mathrm{Cl}$. A 1 m -solution of ICl in $\mathrm{CCl}_{4}\left(0.52 \mathrm{~cm}^{3}, 0.52\right.$ mmol) was added dropwise at room temperature to a stirred solution of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{H}\right)(0.20 \mathrm{~g}, 0.60 \mathrm{mmol})$ in CCl_{4} ($2.0 \mathrm{~cm}^{3}$). The mixture was stirred for 10 min then evaporated, and the solid residue was sublimed $\left(130^{\circ} \mathrm{C}\right.$ at 0.8 Torr) to give (chlorodimethylsilyl)(methoxydimethylsilyl)bis(trimethylsilyl)methane (1) $\left(0.13 \mathrm{~g}, 60 \%\right.$), m.p. $295^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 0.27$ (s, SiMe_{3}), 0.36 (s, SiMe ${ }_{2} \mathrm{OMe}$), 0.61 ($\mathrm{s}, \mathrm{SiMe}_{2} \mathrm{Cl}$), and 3.32 (s, OMe). The physical constants are in good agreement with those reported for a sample obtained by a different method. ${ }^{4}$
(d) $\mathrm{X}=\mathrm{ONO}_{2}$. A solution of $(1)(0.20 \mathrm{~g}, 0.60 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $\left(10 \mathrm{~cm}^{3}\right)$ was stirred with $\mathrm{AgNO}_{3}(0.10 \mathrm{~g} .0 .6 \mathrm{mmol})$ at room temperature for 15 h . Filtration followed by removal of the solvent left a solid, which was sublimed $\left(110^{\circ} \mathrm{C}\right.$ at 1 Torr) to give (methoxydimethylsilyl)(dimethylnitro-oxysily)bis(trimethylsilyl)methane ($0.16 \mathrm{~g}, 75 \%$), m.p. (sealed tube) $227^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 0.27$ ($\mathrm{s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}$), $0.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si} \mathrm{Me}_{2} \mathrm{OMe}\right), 0.62$ (s, $6 \mathrm{H}, \mathrm{SiMe}_{2} \mathrm{ONO}_{2}$), and $3.38(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}) ; m / z 352$ $\left([M-\mathrm{Me}]^{+}\right), 306\left(\left[M-\mathrm{Me}-\mathrm{Me}_{2} \mathrm{O}\right]^{+}\right)$, and 275 (35, $\left[\mathrm{M}-\mathrm{Me}-\mathrm{MeNO}_{3}\right]^{+}$).
(e) $\mathrm{X}=\mathrm{NCO}$. A solution of (1) $(0.30 \mathrm{~g}, 0.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10.0 \mathrm{~cm}^{3}$) was stirred at room temperature for 3 h with AgOCN $(0.20 \mathrm{~g}, 1.3 \mathrm{mmol})$. Filtration and removal of the solvent left (isocyanatodimethylsilyl)(methoxydimethylsilyl)bis(trimethylsilyl)methane ($0.25 \mathrm{~g}, 83 \%$), m.p. $235{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 0.20\left(\mathrm{~s}, 18 \mathrm{H}\right.$, SiMe $_{3}$), $0.24\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2}\right), 0.36$ (s, $6 \mathrm{H}, \mathrm{SiMe}_{2}$), and 3.38 (s, $3 \mathrm{H}, \mathrm{OMe}$); $v(\mathrm{SiNCO}) 2280 \mathrm{~cm}^{-1} ; m / z 332(100 \% \text {, [} M-\mathrm{Me}]^{+}$), 275 (60), 228 (20), 217 (20), 201 (50), and 73 (65) (Found: C, 44.9; H, 10.1; $\mathrm{N}, 3.9 . \mathrm{C}_{13} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{Si}_{4}$ requires C, 44.9; H, 9.6; $\mathrm{N}, 4.0 \%$).
(f) $\mathrm{X}=\mathrm{OCOCF}_{3}$. (i) A solution of (1) $(0.20 \mathrm{~g}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was stirred with $\mathrm{AgOCOCF}_{3}(0.12 \mathrm{~g}, 0.6$
$\mathrm{mmol})$ for 30 min . The usual work-up left a residue, which was sublimed ($100^{\circ} \mathrm{C}$ at 0.5 Torr) to give (methoxydimethylsily)(trifluoroacetoxydimethylsily)bis(trimethylsilyl)methane (0.14 g , 60%), m.p. $195{ }^{\circ} \mathrm{C}$; $\delta_{\mathbf{H}} 0.20$ (s, $18 \mathrm{H}, \mathrm{SiMe}_{3}$), 0.28 (s, 6 H , $\mathrm{SiMe}{ }_{2} \mathrm{OMe}$), 0.56 (s, $6 \mathrm{H}, \mathrm{SiMe}_{2} \mathrm{OCOCF}_{3}$), and $3.30(\mathrm{~s}, 3 \mathrm{H}$, OMe); $\delta_{\mathrm{F}}-128.0(\mathrm{~s}) ; m / z 403\left(100 \%\right.$, [M - Me] ${ }^{+}$), 275 (70), 217 (10), 201 (15), and 73 (20) (Found: C, 40.5; H, 8.1. $\mathrm{C}_{14} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Si}_{4}$ requires $\mathrm{C}, 40.2 ; \mathrm{H}, 8.0 \%$).
(ii) A similar procedure but starting from $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)$ $\left(\mathrm{SiMe}_{2} \mathrm{H}\right)(0.31 \mathrm{~g})$ and $\mathrm{AgOCOCF}_{3}(0.23 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$, and with only 15 min stirring, gave the same product in 80% yield.
$(g) \mathrm{X}=\mathrm{OCOMe}$. A mixture of (1) (0.40 g), AgOCOMe (0.24 g), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature for 3 h . The usual work-up left a residue, which was sublimed $\left(90^{\circ} \mathrm{C}\right.$ at 0.3 Torr) to give (acetoxydimethylsilyl)(methoxydimethylsilyl)bis(trimethylsily) methane, ($0.32 \mathrm{~g}, 82 \%$), m.p. $265{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 0.20$ (s, $18 \mathrm{H}, \mathrm{SiMe}_{3}$), 0.28 (s, $6 \mathrm{H}, \mathrm{SiMe}{ }_{2} \mathrm{OMe}$), 0.48 (s, 6 H , $\mathrm{SiMe}_{2} \mathrm{OCO}$), 1.97 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), and 3.36 (s, $3 \mathrm{H}, \mathrm{OMe}$) (Found: C, 46.4; H, 10.1. $\mathrm{C}_{14} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}_{4}$ requires C , $46.1 ; \mathrm{H}$, 9.95\%).
(h) $\mathrm{X}=$ OCOPh. The procedure described under (g) was used, starting from AgOCOPh , but the residue after work-up was recrystallized from pentane, to give (benzoyloxydimethylsilyl)(methoxydimethylsilyl)bis(trimethylsilyl)methane $\quad(80 \%)$, m.p. $104{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 0.22$ (s, $18 \mathrm{H}, \mathrm{SiMe}_{3}$), 0.27 (s, $6 \mathrm{H}, \mathrm{SiMe} \mathrm{S}_{2} \mathrm{OMe}$), 0.57 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{SiMe}_{2} \mathrm{OCO}$), 3.34 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), and 7.42-8.10 (m, $\left.5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; m / z 411(20 \% \text {, [} M-\mathrm{Me}]^{+}$), $307(20), 275(5), 105$ (100, [PhCO] ${ }^{+}$), 77 (30, [Ph] ${ }^{+}$), and 73 (20) (Found: C, 53.6; H, 9.1. $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}_{4}$ requires $\mathrm{C}, 53.5 ; \mathrm{H}, 8.9 \%$).
(i) $\mathrm{X}=\mathrm{F}$. A solution of (1) $(0.40 \mathrm{~g}, 1.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($20 \mathrm{~cm}^{3}$) was stirred with $\mathrm{AgBF}_{4}(0.25 \mathrm{~g}, 1.3 \mathrm{mmol})$ for 30 min at room temperature. The usual work-up, culminating in sublimation ($100^{\circ} \mathrm{C}$ at 0.2 Torr), gave (fluorodimethylsily)(chlorodimethylsily) bis(trimethylsilyl)methane ($0.33 \mathrm{~g}, 86 \%$), m.p. $273{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 0.20\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.25\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}{ }_{2} \mathrm{OMe}\right), 0.35$ (d, $6 \mathrm{H}, \mathrm{SiMe}_{2} \mathrm{~F}$), and $3.37(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-144.8(\mathrm{~m}$, $J 7.3 \mathrm{~Hz}$); m/z 309 (100%, [M - Me] ${ }^{+}$), 221 (20), 217 (70) $\left[M-\mathrm{Me}-\mathrm{Me}_{3} \mathrm{SiF}\right]^{+}, 205$ (45), 201 (60), 187 (35), and 73 (70).
(j) $\mathrm{X}=\mathrm{OSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p$. A mixture of (1) $(0.35 \mathrm{~g}, 1.0 \mathrm{mmol})$, $\mathrm{AgOSO} \mathbf{2}_{2} \mathrm{C}_{4} \mathrm{Me}-p(0.30 \mathrm{~g}, 1.0 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 4 h . The usual work-up left a residue, which was recrystallized from n-pentane to give (methoxydimethylsily)(p-tolylsulphonyloxydimethylsily)bis(trimethylsily) methane ($0.35 \mathrm{~g}, 71 \%$), m.p. $97^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 0.16$ (s, 18 $\mathrm{H}, \mathrm{SiMe}_{3}$), 0.24 (s, $6 \mathrm{H}, \mathrm{SiMe}{ }_{2} \mathrm{OMe}$), 0.62 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{SiMe}_{2} \mathrm{OSO}$), $2.45(\mathrm{~s}, 3 \mathrm{H}, \mathrm{p}-\mathrm{Me}), 3.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, and $7.30-7.80(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}$) (Found: C, 47.6; $\mathrm{H}, 8.4 . \mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{SSi}_{4}$ requires C, 47.9; H, 8.4%).
$(k) \mathrm{X}=\mathrm{N}_{3}$. A mixture of $(1)(0.40 \mathrm{~g}, 1.3 \mathrm{mmol}), \mathrm{NaN}_{3}(0.86 \mathrm{~g}$, 13.2 mmol), and 1,2 -dimethoxyethane ($10 \mathrm{~cm}^{3}$) was boiled under reflux for 6 h . Addition of water followed by extraction with n-hexane and washing, drying, and evaporation of the extract left a solid, which was sublimed $\left(100^{\circ} \mathrm{C}\right.$ at 0.4 Torr) to give (azidodimethylsilyl)(methoxydimethylsily)bis(trimethylsilyl)methane ($0.24 \mathrm{~g}, 60 \%$), m.p. $270{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 0.23$ (s, $18 \mathrm{H}, \mathrm{SiMe}_{3}$), $0.31\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si} \mathrm{Me}_{2} \mathrm{OMe}\right)$, $0.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiMe}_{2} \mathrm{~N}_{3}\right.$), and $3.40(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{OMe}) ; \mathrm{v}\left(\mathrm{SiN}_{3}\right) 2060 \mathrm{~cm}^{-1} ; m / z 332\left(15 \%\right.$, [M-Me] $\left.{ }^{+}\right), 305$ (20, $\left[M-\mathrm{N}_{3}\right]^{+}$), 275 (10), and 73 (100) (Found: C, 42.2; H, 10.0. $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{OSi}_{4}$ requires $\mathrm{C}, 42.0 ; \mathrm{H}, 9.6 \%$).
(l) $\mathrm{X}=\mathrm{OH}$. A solution of $(1)(0.4 \mathrm{~g})$ in a mixture of dioxane ($10 \mathrm{~cm}^{3}$), water ($1 \mathrm{~cm}^{3}$), and $\mathrm{Et}_{3} \mathrm{~N}\left(1 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 36 h . The solvent was removed and the residue was extracted with n-pentane. The extract was filtered and evaporated, and the residue was sublimed ($70^{\circ} \mathrm{C}$ at 0.1 Torr) to give (hydroxydimethylsilyl)(methoxydimethylsilyl)bis(trimethylsily) methane ($0.32 \mathrm{~g}, 84^{\circ} \%$), m.p. $265^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 0.23\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}\right.$),
0.30 (s, $6 \mathrm{H}, \mathrm{SiMe}_{2}$), 0.32 (s, $6 \mathrm{H}, \mathrm{SiMe}_{2}$), 1.33 (br s, 1 H , OH), and $3.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}) ; \mathrm{v}(\mathrm{OH})\left(\mathrm{CCl}_{4}\right) 3700$ (sharp) and $3700-3200 \mathrm{~cm}^{-1} ; m / z 307\left(35 \%\right.$, [M-Me] ${ }^{+}$), 291 ($30,[M-$ $\left.\mathrm{OMe}^{+}\right), 275(60), 187(20), 73(100)$, and $59\left(40,\left[\mathrm{SiMe}_{2} \mathrm{H}\right]^{+}\right)$ (Found: C, 44.3; H, 10.4. $\mathrm{C}_{12} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}_{4}$ requires $\mathrm{C}, 44.7 ; \mathrm{H}$, 10.6%).
(m) $\mathrm{X}=\mathrm{OCH}_{2} \mathrm{CF}_{3}$. A mixture of (1) (0.35 g), dioxane (5 cm^{3}), $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}\left(2 \mathrm{~cm}^{3}\right)$, and $\mathrm{Et}_{3} \mathrm{~N}\left(1 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 24 h . Work-up as in (l) (with sublimation at $90^{\circ} \mathrm{C}$ at 0.1 Torr) gave (methoxydimethylsily l)(2,2,2-trifluoroethoxydimethylsilyl)bis(trimethylsilyl)methane ($0.030 \mathrm{~g}, 72 \%$), m.p. $204{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 0.19$ (s, $18 \mathrm{H}, \mathrm{SiMe}_{3}$), 0.25 (s, $6 \mathrm{H}, \mathrm{SiMe}_{2}$), 0.27 (s, $6 \mathrm{H}, \mathrm{SiMe}_{2}$), $3.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}\right.$), and $3.65\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CF}_{3}\right.$); δ_{F} $-75.9(\mathrm{t}, J 8.7 \mathrm{~Hz}) ; m / z 389\left(100 \%\right.$, [M Me] ${ }^{+}$), 357 (10 , $[M-\mathrm{Me}-\mathrm{MeOH}]^{+}$), 309 (25), 291 (10), 275 (30), 217 (15), 187 (10), and 73 (25).

Reactions of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{X}\right)$.-(a) A solution of (1) (0.40 g) in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}\left(10 \mathrm{~cm}^{3}\right.$) was stirred at room temperature for 1 h . Removal of the solvent left bis-(2,2,2-trifluoroethoxydimethylsilyl)bis(trimethylsily)methane $(0.43 \mathrm{~g}$, 77%), m.p. $67^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 0.22\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.32\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{SiMe}_{2}\right)$, $3.70-4.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{F}}-76.0(\mathrm{t}) ; \mathrm{m} / \mathrm{z} 457(10 \%$, $[M-\mathrm{Me}]^{+}$), $358\left(10,\left[\mathrm{M}-\mathrm{Me}-\mathrm{OCH}_{2} \mathrm{CF}_{3}\right]^{+}\right.$), and 73 (100) (Found: $\mathrm{C}, 38.5 ; \mathrm{H}, 7.4 . \mathrm{C}_{15} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{Si}_{4}$ requires $\mathrm{C}, 38.1$; H, 7.2\%).
(b) A solution of (1) $(0.20 \mathrm{~g})$ in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left(8 \mathrm{~cm}^{3}\right)$ was kept at room temperature for 20 min . Removal of the solvent under vacuum left $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OCOCF}_{3}\right)_{2}$, m.p. $109^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 0.32$ (s, 18 $\mathrm{H}, \mathrm{SiMe}_{3}$) and 0.64 (s, $12 \mathrm{H}, \mathrm{SiMe}_{2}$); $\delta_{\mathrm{F}}-124.0$ (s). The properties agree well with those previously reported. ${ }^{10}$
(c) A solution of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{ONO}_{2}\right)(0.050 \mathrm{~g})$ in a mixture of $\mathrm{MeOH}\left(5.0 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.0 \mathrm{~cm}^{3}\right)$ was kept at $30^{\circ} \mathrm{C}$ for 5 min . Evaporation under vacuum left exclusively $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)_{2}$.
(d) A solution of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{ONO}_{2}\right)(0.05 \mathrm{~g})$ in a mixture of $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}\left(5 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ was kept at room temperature for 15 min . Evaporation under vacuum left exclusively $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}$.
(e) A solution of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)\left(\mathrm{SiMe}_{2} \mathrm{OCOCF}_{3}\right)(0.05 \mathrm{~g})$ in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ was kept at $60^{\circ} \mathrm{C}$. Monitoring of the ${ }^{1} \mathrm{H}$ n.m.r. signal at $\delta 0.16\left(\mathrm{SiMe}_{3}\right)$ showed that the reaction was $c a$. 54% complete in 1 h and complete in 24 h . Evaporation under vacuum left exclusively $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)_{2}$.
(f) A solution of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)_{2}(0.20 \mathrm{~g})$ in a mixture of water ($1 \mathrm{~cm}^{3}$) and acetone $9 \mathrm{~cm}^{3}$) was boiled under reflux for 8 h. Removal of the solvent left only starting material. Refluxing for 15 h in EtOH gave a similar result.
(g) A solution of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OMe}\right)_{2}(0.15 \mathrm{~g})$ in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ ($10 \mathrm{~cm}^{3}$) was boiled under reflux for 3 h . Removal of the solvent under vacuum left exclusively $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}$.

Reactions of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{X}\right)_{2}$.-(a) A solution of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2}-\right.$ $\left.\mathrm{OCOCF}_{3}\right)_{2}(0.06 \mathrm{~g})$ in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$ was kept at $60^{\circ} \mathrm{C}$, and samples were withdrawn periodically for ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy. Half the starting material had disappeared in ca. 65 h . The product was not identified.
(b) A solution of $\mathrm{R}_{2} \mathrm{C}\left(\mathrm{SiMe}_{2} \mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}(0.15 \mathrm{~g})$ in MeOH ($10 \mathrm{~cm}^{3}$) was boiled under reflux for 15 h . Removal of the solvent left only starting material.

Acknowledgements

We thank the S.E.R.C. for support, the Ministry of Higher Education of the Kingdom of Saudi Arabia for a Postgraduate Research Scholarship (to A. I. A.-W.), Mr. A. M. Greenway for recording the mass spectra, and the Dow Corning Co. Ltd. for gifts of organosilicon chemicals.

References

1 C. Eaborn, P. D. Lickiss, S. T. Najim, and M. N. Romanelli, J. Chem. Soc., Chem. Commun., 1985, 1754.
2 C. Eaborn and D. E. Reed, J. Chem. Soc., Chem. Commun., 1983, 495.
3 N. Wiberg, G. Preiner, and O. Schieda, Chem. Ber., 1981, 114, 2087.
4 C. Eaborn and D. E. Reed, J. Chem. Soc., Perkin Trans. 2, 1985, 1687.
5 S. S. Dua, C. Eaborn, D. A. R. Happer, S. P. Hopper, K. D. Safa, and D. R. M. Walton, J. Organomet. Chem., 1979, 178, 75.

6 C. Eaborn and S. P. Hopper, J. Organomet. Chem., 1980, 192, 27.
7 C. Eaborn and A. I. Mansour, J. Organomet. Chem., 1983, 254, 273.
8 C. Eaborn and N. M. Romanelli, J. Chem. Soc., Chem. Commun., 1984, 1616.
9 C. Eaborn, in 'Organosilicon and Bioganosilicon Chemistry,' ed. H. Sakurai, Ellis Horwood, Chichester, 1985, pp. 123-130.

10 C. Eaborn and S. P. Hopper, J. Organomet. Chem., 1979, 170, C51.

