Preparation and Some Reactions of Compounds of the Type $(Me_3Si)_2C$ - $(SiMe_2OMe)(SiMe_2X)$. Anchimeric Assistance by the Methoxy Group

Abdulaziz I. Al-Wassil, Colin Eaborn,* and M. Novella Romanelli

School of Chemistry and Molecular Sciences, University of Sussex, Brighton, BN1 90J

Because of anchimeric assistance by the γ -OMe group the compound R₂C(SiMe₂OMe)(SiMe₂Cl) (1) (R = SiMe₃ throughout), in contrast to the closely related R₃CSiMe₂Cl, reacts readily with silver salts; thus reactions with AgY or AgBF₄ give the compounds R₂C(SiMe₂OMe)(SiMe₂X) with X = ONO₂, NCO, OCOCF₃ OCOMe, OCOPh, OSO₂C₆H₄Me-p, or F. The anchimeric assistance is so great that even the hydride R₂C(SiMe₂OMe)(SiMe₂H) reacts with silver salts; thus AgOCOCF₃ gives R₂C(SiMe₂OMe)-(SiMe₂OCOEF₃). The azide R₂C(SiMe₂OMe)(SiMe₂N₃) was made by treatment of (1) with NaN₃ in (MeOCH₂)₂. Treatment of (1) with water in dioxane gives R₂C(SiMe₂OMe)(SiMe₂OH) in the presence of Et₃N and R₂C(SiMe₂OH)₂ in its absence. Likewise reaction with CF₃CH₂OH gives R₂C(SiMe₂OMe)(SiMe₂OCH₂CF₃) in the presence of Et₃N and R₂C(SiMe₂OCH₂CF₃) in the presence of Et₃N and R₂C(SiMe₂OCH₂CF₃), in the presence of Et₃N and R₂C(SiMe₂OCH₂CF₃)₂ in its absence. The bis(trifluoroacetate) R₂C(SiMe₂OCOCF₃)₂ reacts with MeOH more slowly than R₂C(SiMe₂OMe)(SiMe₂OCOCF₃), indicating that the γ -OCOCF₃ provides less anchimeric assistance than the γ -OMe group.

It has been briefly reported that the γ -OMe group in the compound R₂C(SiMe₂OMe)(SiMe₂Cl) (1) (R = SiMe₃ throughout this paper) provides powerful anchimeric assistance to the departure of the Cl⁻ in alcoholysis, the reaction apparently involving rate-determining ionization to give the methoxybridged cation (2);¹ thus (1) is > 10⁶ times as reactive towards MeOH as the closely related compound R₂C(SiMe₂Cl).² We describe below the preparations and some reactions of a range of compounds R₂C(SiMe₂OMe)(SiMe₂X) required for a detailed study of such anchimeric assistance.

Results and Discussion

Compound (1), the starting material for most of the work described here, was usually made as previously described by treatment of $R_2C(SiMe_2OMe)Li$ (*cf.* ref. 3) with Me_2SiCl_2 .⁴ It was also obtained, however, *via* the hydride $R_2C(SiMe_2OMe)$ -(SiMe_2H), which was made from $R_2C(SiMe_2OMe)Li$ and Me_2SiHCl ; the hydride was treated with ICl to give (1). It is of interest that only the chloride (1) was isolated even when slightly less than 1 molar proportion of ICl was used, since R_3CSiMe_2I under the same conditions gives only the iodide R_3CSiMe_2I .^{5,6} It is uncertain whether the chloride (1) is the initial product or comes from prior formation of the iodide and subsequent reaction of the latter.⁷

The chloride R_3CSiMe_2Cl does not react with silver salts under conditions in which the corresponding iodide reacts readily.⁵ Because of the powerful anchimeric assistance by the OMe group, the chloride (1) also reacts readily with a range of silver salts, AgY, in CH₂Cl₂ or Et₂O, and the compounds $R_2C(SiMe_2OMe)(SiMe_2X)$ with $X = ONO_2$, NCO, OCOCF₃, OCOMe, OCOPh, or OSO₂C₆H₄Me-*p*, were obtained in this way. (The formation of the normal thiocyanate on reaction with AgSCN has been briefly reported.⁸) Use of AgBF₄ likewise gave the fluoride $R_2C(SiMe_2OMe)(SiMe_2F)$. So great is the effect of the OMe group that even the hydride $R_2C(SiMe_2OMe)$ -(SiMe₂H) reacts with silver salts; thus with AgOCOCF₃ it rapidly gave the trifluoroacetate.

The azide $R_2C(SiMe_2OMe)(SiMe_2N_3)$ was obtained by treating (1) with NaN₃ in 1,2-dimethoxyethane; the reaction requires several hours under reflux because (1) is only a few

times as reactive as TsiSiMe₂Cl in such direct nucleophilic substitutions.⁹

When (1) was treated with an excess of water in dioxane the diol $R_2C(SiMe_2OH)_2$ was formed exclusively. After the initial conversion into $R_2C(SiMe_2OMe)(SiMe_2OH)$, subsequent loss of the OMe group is catalysed by the formed hydrochloric acid and anchimerically assisted by the γ -OH group. When the reaction was carried out in the presence of Et₃N the methoxy-hydroxy compound $R_2C(SiMe_2OMe)$ -(SiMe₂OH) was obtained. Treatment of (1) with CF₃CH₂OH likewise gave $R_2C(SiMe_2OMe)(SiMe_2OCH_2CF_3)$ in the presence of Et₃N but $R_2C(SiMe_2OCH_2CF_3)_2$ in its absence. The nitrate $R_2C(SiMe_2OMe)(SiMe_2ONO_2)$ reacted readily with MeOH at room temperature to give $R_2C(SiMe_2OMe)_2$, and with CF₃CH₂OH to give $R_2C(SiMe_2OCH_2CF_3)_2$.

The dimethoxide $R_2C(SiMe_2OMe)_2$ did not react with refluxing ethanol or aqueous acetone, but with the more acidic CF_3CH_2OH it gave $R_2C(SiMe_2OCH_2CF_3)_2$. The latter did not react with refluxing MeOH.

The chloride (1) reacted readily with CF_3CO_2H at room temperature to give $R_2C(SiMe_2OCOCF_3)_2$. When a solution of the latter in MeOH was kept at 60 °C, half of it had reacted after *ca*. 60 h. The methoxy trifluoroacetate $R_2C(SiMe_2OMe)$ -(SiMe_2OCOCF_3) was markedly more reactive, half of it reacting in about 1 h, and conversion into $R_2C(SiMe_2OCOCF_3)_2$ being complete within 20 h; it is evident that under these conditions the γ -OCOCF₃ group supplies anchimeric assistance considerably less effectively than the γ -OMe group.

Experimental

The ¹H n.m.r. spectra were recorded (for solutions in CCl_4 containing CH_2Cl_2 as lock and reference) at 90 MHz with a

Perkin-Elmer R32 spectrometer. Unless otherwise indicated ¹⁹F n.m.r. spectra were recorded at 84.6 MHz with the same spectrometer or at 75.4 MHz with a Bruker WP80 FT spectrometer for solutions in CCl₄ containing CFCl₃ as reference; negative shifts are upfield from CFCl₃. The i.r. spectra were recorded (for Nujol mulls between NaCl plates unless otherwise indicated) with a Perkin-Elmer 1574 spectrophotometer. All solvents were dried by standard methods.

Preparations of $R_2C(SiMe_2OMe)(SiMe_2X)$.--(a) X = H. A 1.6M-solution of BuⁿLi (10.6 mmol) in hexane (6.60 cm³) was added dropwise at -110 °C to a stirred solution of $R_2C(SiMe_2OMe)Cl^4$ (3.0 g, 10.6 mmol) in a mixture of tetrahydrofuran (THF) (65 cm³), Et₂O (3.0 cm³), and n-pentane (3.0 cm³). The mixture was stirred at -110 °C for 40 min then allowed to warm to -80 °C, and Me₂SiHCl (1.0 g, 0.0107 mol) was added dropwise. The mixture was allowed to warm to room temperature, volatile material was removed under vacuum, and the solid residue recrystallized from MeOH to give (dimethylsilyI)(methoxydimethylsilyI)bis(trimethylsilyI)methane (2.0 62%), m.p. 195 °C; $\delta_{\rm H}$ 0.16 (s, 18 H, SiMe₃), 0.24 (d, 6 H, SiMe₂OMe), 0.28 (s, 6 H, SiMe₂H), 3.38 (s, 3 H, OMe), and 3.96 (m, 1 H, SiH); v(SiH) (Nujol) 2 100 cm⁻¹; m/z 291 (100%, $[M - Me]^+$), 217 (15, $[M - SiMe_2OMe]^+$), 201 (15, $[M - Me - SiMe_2HOMe]^+$), 187 (15), and 73 (50) (Found: 46.4; H, 11.4. C₁₂H₃₄OSi₄ requires C, 47.0; H, 11.2%).

(b) X = Br. A 1M-solution of Br₂ (2.1 mmol) in CCl₄ (2.1 cm³) was added dropwise to a stirred solution of R₂C(SiMe₂OMe)-(SiMe₂H) (0.60 g, 1.9 mmol) in CH₂Cl₂ (4.0 cm³). The mixture was stirred at room temperature for 20 min then the solvent was removed and the solid residue sublimed (100 °C at 0.5 Torr) to give (bromodimethylsilyl)(methoxydimethylsilyl)bis(trimethyl-silyl)methane (0.51 g, 68%), m.p. 201 °C; $\delta_{\rm H}$ 0.28 (s, 18 H, SiMe₃), 0.32 (s, 6 H, SiMe₂OMe), 0.77 (s, 6 H, SiMe₂Br), and 3.32 (s, 3 H, OMe); m/z 371, 369 (5%, [M - Me]⁺), 290 (10, [M - Me - Br]⁺), 275 (100, [M - Me - MeBr]⁺), 201 (20), and 73 (30).

(c) X = Cl. A 1M-solution of ICl in CCl₄ (0.52 cm³, 0.52 mmol) was added dropwise at room temperature to a stirred solution of $R_2C(SiMe_2OMe)(SiMe_2H)$ (0.20 g, 0.60 mmol) in CCl₄ (2.0 cm³). The mixture was stirred for 10 min then evaporated, and the solid residue was sublimed (130 °C at 0.8 Torr) to give (chlorodimethylsilyl)(methoxydimethylsilyl)bis-(trimethylsilyl)methane (1) (0.13 g, 60%), m.p. 295 °C; δ_H 0.27 (s, SiMe₃), 0.36 (s, SiMe₂OMe), 0.61 (s, SiMe₂Cl), and 3.32 (s, OMe). The physical constants are in good agreement with those reported for a sample obtained by a different method.⁴

(d) $X = ONO_2$. A solution of (1) (0.20 g, 0.60 mmol) in Et₂O (10 cm³) was stirred with AgNO₃ (0.10 g. 0.6 mmol) at room temperature for 15 h. Filtration followed by removal of the solvent left a solid, which was sublimed (110 °C at 1 Torr) to give (methoxydimethylsilyl)(dimethylnitro-oxysilyl)bis(trimethylsilyl)methane (0.16 g, 75%), m.p. (sealed tube) 227 °C; $\delta_{\rm H}$ 0.27 (s, 18 H, SiMe₃), 0.36 (s, 6 H, SiMe₂OMe), 0.62 (s, 6 H, SiMe₂ONO₂), and 3.38 (s, 3 H, OMe); m/z 352 ([M - Me]⁺), 306 ([M - Me - Me₂O]⁺), and 275 (35, [M - Me - MeNO₃]⁺).

(e) X = NCO. A solution of (1) (0.30 g, 0.9 mmol) in CH₂Cl₂ (10.0 cm³) was stirred at room temperature for 3 h with AgOCN (0.20 g, 1.3 mmol). Filtration and removal of the solvent left (*isocyanatodimethylsilyl*)(*methoxydimethylsilyl*)*bis*(*trimethyl-silyl*)*methane* (0.25 g, 83%), m.p. 235 °C; $\delta_{\rm H}$ 0.20 (s, 18 H, SiMe₃), 0.24 (s, 6 H, SiMe₂), 0.36 (s, 6 H, SiMe₂), and 3.38 (s, 3 H, OMe); v(SiNCO) 2 280 cm⁻¹; m/z 332 (100%, [M - Me]⁺), 275 (60),

228 (20), 217 (20), 201 (50), and 73 (65) (Found: C, 44.9; H, 10.1; N, 3.9. $C_{13}H_{33}NO_2Si_4$ requires C, 44.9; H, 9.6; N, 4.0%).

(f) $X = OCOCF_3$. (i) A solution of (1) (0.20 g, 0.6 mmol) in CH₂Cl₂ (10 cm³) was stirred with AgOCOCF₃ (0.12 g, 0.6

mmol) for 30 min. The usual work-up left a residue, which was sublimed (100 °C at 0.5 Torr) to give (methoxydimethylsilyl)-(trifluoroacetoxydimethylsilyl)bis(trimethylsilyl)methane (0.14 g, 60%), m.p. 195 °C; $\delta_{\rm H}$ 0.20 (s, 18 H, SiMe₃), 0.28 (s, 6 H, SiMe₂OMe), 0.56 (s, 6 H, SiMe₂OCOCF₃), and 3.30 (s, 3 H, OMe); $\delta_{\rm F}$ - 128.0 (s); m/z 403 (100%, $[M - Me]^+$), 275 (70), 217 (10), 201 (15), and 73 (20) (Found: C, 40.5; H, 8.1. C₁₄H₃₃F₃O₃Si₄ requires C, 40.2; H, 8.0%).

(ii) A similar procedure but starting from $R_2C(SiMe_2OMe)$ -(SiMe₂H) (0.31 g) and AgOCOCF₃ (0.23 g) in CH₂Cl₂ (20 cm³), and with only 15 min stirring, gave the same product in 80% yield.

(g) X = OCOMe. A mixture of (1) (0.40 g), AgOCOMe (0.24 g), and CH₂Cl₂ was stirred at room temperature for 3 h. The usual work-up left a residue, which was sublimed (90 °C at 0.3 Torr) to give (*acetoxydimethylsilyl*)(*methoxydimethylsilyl*)bis-(*trimethylsilyl*)methane, (0.32 g, 82%), m.p. 265 °C; $\delta_{\rm H}$ 0.20 (s, 18 H, SiMe₃), 0.28 (s, 6 H, SiMe₂OMe), 0.48 (s, 6 H, SiMe₂OCO), 1.97 (s, 3 H, CH₃CO), and 3.36 (s, 3 H, OMe) (Found: C, 46.4; H, 10.1. C₁₄H₃₆O₃Si₄ requires C, 46.1; H, 9.95%).

(h) X = OCOPh. The procedure described under (g) was used, starting from AgOCOPh, but the residue after work-up was recrystallized from pentane, to give (*benzoyloxydimethylsilyl*)(*methoxydimethylsilyl*)*bis*(*trimethylsilyl*)*methane* (80%), m.p. 104 °C; $\delta_{\rm H}$ 0.22 (s, 18 H, SiMe₃), 0.27 (s, 6 H, SiMe₂OMe), 0.57 (s, 6 H, SiMe₂OCO), 3.34 (s, 3 H, OMe), and 7.42—8.10 (m, 5 H, C₆H₃); *m/z* 411 (20%, [*M* – Me]⁺), 307 (20), 275 (5), 105 (100, [PhCO]⁺), 77 (30, [Ph]⁺), and 73 (20) (Found: C, 53.6; H, 9.1, C₁₉H₃₈O₃Si₄ requires C, 53.5; H, 8.9%).

(i) X = F. A solution of (1) (0.40 g, 1.2 mmol) in CH₂Cl₂ (20 cm³) was stirred with AgBF₄ (0.25 g, 1.3 mmol) for 30 min at room temperature. The usual work-up, culminating in sublimation (100 °C at 0.2 Torr), gave (*fluorodimethylsilyl*)(*chlorodimethylsilyl*)*bis*(*trimethylsilyl*)*methane* (0.33 g, 86%), m.p. 273 °C; $\delta_{\rm H}$ 0.20 (s, 18 H, SiMe₃), 0.25 (s, 6 H, SiMe₂OMe), 0.35 (d, 6 H, SiMe₂F), and 3.37 (s, 3 H, OMe); $\delta_{\rm F}$ (CDCl₃) – 144.8 (m, J 7.3 Hz); m/z 309 (100%, $[M - Me]^+$), 221 (20), 217 (70) $[M - Me - Me_3SiF]^+$, 205 (45), 201 (60), 187 (35), and 73 (70).

(j) X = OSO₂C₆H₄Me-*p*. A mixture of (1) (0.35 g, 1.0 mmol), AgOSO₂C₆H₄Me-*p* (0.30 g, 1.0 mmol), and CH₂Cl₂ (20 cm³) was stirred at room temperature for 4 h. The usual work-up left a residue, which was recrystallized from n-pentane to give (methoxydimethylsilyl)(p-tolylsulphonyloxydimethylsilyl)bis-(trimethylsilyl)methane (0.35 g, 71%), m.p. 97 °C; $\delta_{\rm H}$ 0.16 (s, 18 H, SiMe₃), 0.24 (s, 6 H, SiMe₂OMe), 0.62 (s, 6 H, SiMe₂OSO), 2.45 (s, 3 H, *p*-Me), 3.33 (s, 3 H, OMe), and 7.30–7.80 (m, 4 H, C₆H₄) (Found: C, 47.6; H, 8.4. C₁₉H₄₀O₄SSi₄ requires C, 47.9; H, 8.4%).

(k) $X = N_3$. A mixture of (1) (0.40 g, 1.3 mmol), NaN₃ (0.86 g, 13.2 mmol), and 1,2-dimethoxyethane (10 cm³) was boiled under reflux for 6 h. Addition of water followed by extraction with n-hexane and washing, drying, and evaporation of the extract left a solid, which was sublimed (100 °C at 0.4 Torr) to give (*azidodimethylsilyl*)(*methoxydimethylsilyl*)*bis*(*trimethylsilyl*)*methane* (0.24 g, 60%), m.p. 270 °C; $\delta_H 0.23$ (s, 18 H, SiMe₃), 0.31 (s, 6 H, SiMe₂OMe), 0.44 (s, 6 H, SiMe₂N₃), and 3.40 (s, 3 H, OMe); v(SiN₃) 2 060 cm⁻¹; *m/z* 332 (15%, [*M* - Me]⁺), 305 (20, [*M* - N₃]⁺), 275 (10), and 73 (100) (Found: C, 42.2; H, 10.0. C₁₅H₃₃N₃OSi₄ requires C, 42.0; H, 9.6%).

(1) X = OH. A solution of (1) (0.4 g) in a mixture of dioxane (10 cm³), water (1 cm³), and Et₃N (1 cm³) was stirred at room temperature for 36 h. The solvent was removed and the residue was extracted with n-pentane. The extract was filtered and evaporated, and the residue was sublimed (70 °C at 0.1 Torr) to give (hydroxydimethylsilyl)(methoxydimethylsilyl)bis(trimethylsilyl)methane (0.32 g, 84%), m.p. 265 °C; $\delta_H 0.23$ (s, 18 H, SiMe₃), 0.30 (s, 6 H, SiMe₂), 0.32 (s, 6 H, SiMe₂), 1.33 (br s, 1 H, OH), and 3.40 (s, 3 H, OMe); v(OH) (CCl₄) 3 700 (sharp) and 3 700–3 200 cm⁻¹; m/z 307 (35%, $[M - Me]^+$), 291 (30, $[M - OMe]^+$), 275 (60), 187 (20), 73 (100), and 59 (40, $[SiMe_2H]^+$) (Found: C, 44.3; H, 10.4. C₁₂H₃₄O₂Si₄ requires C, 44.7; H, 10.6%).

(m) $X = OCH_2CF_3$. A mixture of (1) (0.35 g), dioxane (5 cm³), CF_3CH_2OH (2 cm³), and Et_3N (1 cm³) was stirred at room temperature for 24 h. Work-up as in (*l*) (with sublimation at 90 °C at 0.1 Torr) gave (*methoxydimethylsilyl*)(2,2,2-*trifluoro-ethoxydimethylsilyl*)bis(trimethylsilyl)methane (0.030 g, 72%), m.p. 204 °C; δ_H 0.19 (s, 18 H, SiMe_3), 0.25 (s, 6 H, SiMe_2), 0.27 (s, 6 H, SiMe_2), 3.25 (s, 3 H, OMe), and 3.65 (q, 2 H, CH₂CF₃); δ_F -75.9 (t, J 8.7 Hz); m/z 389 (100%, [M - Me]⁺), 357 (10, [M - Me - MeOH]⁺), 309 (25), 291 (10), 275 (30), 217 (15), 187 (10), and 73 (25).

Reactions of $R_2C(SiMe_2OMe)(SiMe_2X).-(a)$ A solution of (1) (0.40 g) in CF₃CH₂OH (10 cm³) was stirred at room temperature for 1 h. Removal of the solvent left *bis*-(2,2,2-*tri-fluoroethoxydimethylsilyl)bis(trimethylsilyl)methane* (0.43 g, 77%), m.p. 67 °C; $\delta_H 0.22$ (s, 18 H, SiMe₃), 0.32 (s, 12 H, SiMe₂), 3.70-4.01 (m, 4 H, CH₂); $\delta_F - 76.0$ (t); m/z 457 (10%, $[M - Me]^+$), 358 (10, $[M - Me - OCH_2CF_3]^+$), and 73 (100) (Found: C, 38.5; H, 7.4. $C_{15}H_{34}F_6O_2Si_4$ requires C, 38.1; H, 7.2%).

(b) A solution of (1) (0.20 g) in CF₃CO₂H (8 cm³) was kept at room temperature for 20 min. Removal of the solvent under vacuum left R₂C(SiMe₂OCOCF₃)₂, m.p. 109 °C; $\delta_{\rm H}$ 0.32 (s, 18 H, SiMe₃) and 0.64 (s, 12 H, SiMe₂); $\delta_{\rm F}$ -124.0 (s). The properties agree well with those previously reported.¹⁰

(c) A solution of $R_2C(SiMe_2OMe)(SiMe_2ONO_2)$ (0.050 g) in a mixture of MeOH (5.0 cm³) and CH₂Cl₂ (1.0 cm³) was kept at 30 °C for 5 min. Evaporation under vacuum left exclusively $R_2C(SiMe_2OMe)_2$.

(d) A solution of $R_2C(SiMe_2OMe)(SiMe_2ONO_2)$ (0.05 g) in a mixture of CF₃CH₂OH (5 cm³) and CH₂Cl₂ (1 cm³) was kept at room temperature for 15 min. Evaporation under vacuum left exclusively $R_2C(SiMe_2OCH_2CF_3)_2$.

(e) A solution of $R_2C(SiMe_2OMe)(SiMe_2OCOCF_3)$ (0.05 g) in MeOH (5 cm³) was kept at 60 °C. Monitoring of the ¹H n.m.r. signal at δ 0.16 (SiMe₃) showed that the reaction was ca. 54% complete in 1 h and complete in 24 h. Evaporation under vacuum left exclusively $R_2C(SiMe_2OMe)_2$. (f) A solution of $R_2C(SiMe_2OMe)_2$ (0.20 g) in a mixture of water (1 cm³) and acetone 9 cm³) was boiled under reflux for 8 h. Removal of the solvent left only starting material. Refluxing for 15 h in EtOH gave a similar result.

(g) A solution of $R_2C(SiMe_2OMe)_2$ (0.15 g) in CF₃CH₂OH (10 cm³) was boiled under reflux for 3 h. Removal of the solvent under vacuum left exclusively $R_2C(SiMe_2OCH_2CF_3)_2$.

Reactions of $R_2C(SiMe_2X)_2$.--(a) A solution of $R_2C(SiMe_2-OCOCF_3)_2$ (0.06 g) in MeOH (5 cm³) was kept at 60 °C, and samples were withdrawn periodically for ¹H n.m.r. spectroscopy. Half the starting material had disappeared in *ca*. 65 h. The product was not identified.

(b) A solution of $R_2C(SiMe_2OCH_2CF_3)_2$ (0.15 g) in MeOH (10 cm³) was boiled under reflux for 15 h. Removal of the solvent left only starting material.

Acknowledgements

We thank the S.E.R.C. for support, the Ministry of Higher Education of the Kingdom of Saudi Arabia for a Postgraduate Research Scholarship (to A. I. A.-W.), Mr. A. M. Greenway for recording the mass spectra, and the Dow Corning Co. Ltd. for gifts of organosilicon chemicals.

References

- 1 C. Eaborn, P. D. Lickiss, S. T. Najim, and M. N. Romanelli, J. Chem. Soc., Chem. Commun., 1985, 1754.
- 2 C. Eaborn and D. E. Reed, J. Chem. Soc., Chem. Commun., 1983, 495.
- 3 N. Wiberg, G. Preiner, and O. Schieda, Chem. Ber., 1981, 114, 2087.
- 4 C. Eaborn and D. E. Reed, J. Chem. Soc., Perkin Trans. 2, 1985, 1687.
- 5 S. S. Dua, C. Eaborn, D. A. R. Happer, S. P. Hopper, K. D. Safa, and D. R. M. Walton, J. Organomet. Chem., 1979, 178, 75.
- 6 C. Eaborn and S. P. Hopper, J. Organomet. Chem., 1980, 192, 27.
- 7 C. Eaborn and A. I. Mansour, J. Organomet. Chem., 1983, 254, 273.
- 8 C. Eaborn and N. M. Romanelli, J. Chem. Soc., Chem. Commun., 1984, 1616.
- 9 C. Eaborn, in 'Organosilicon and Bioganosilicon Chemistry,' ed. H. Sakurai, Ellis Horwood, Chichester, 1985, pp. 123-130.
- 10 C. Eaborn and S. P. Hopper, J. Organomet. Chem., 1979, 170, C51.

Received 24th January 1986; Paper 6/176